Improving relational similarity measurement using symmetries in proportional word analogies
نویسندگان
چکیده
Measuring the similarity between the semantic relations that exist between words is an important step in numerous tasks in natural language processing such as answering word analogy questions, classifying compound nouns, and word sense disambiguation. Given two word pairs (A,B) and (C,D), we propose a method to measure the relational similarity between the semantic relations that exist between the two words in each word pair. Typically, a high degree of relational similarity can be observed between proportional analogies (i.e. analogies that exist among the four words, A is to B such as C is to D). We describe eight different types of relational symmetries that are frequently observed in proportional analogies and use those symmetries to robustly and accurately estimate the relational similarity between two given word pairs. We use automatically extracted lexical-syntactic patterns to represent the semantic relations that exist between two words and then match those patterns in Web search engine snippets to find candidate words that form proportional analogies with the original word pair. We define 8 types of relational symmetries for proportional analogies and use those as features in a supervised learning approach. We evaluate the proposed method using the Scholastic Aptitude Test (SAT) word analogy benchmark dataset. Our experimental results show that the proposed method can accurately measure relational similarity between word pairs by exploiting the symmetries that exist in proportional analogies. The proposed method achieves an SAT score of 49.2% on the benchmark dataset, which is comparable to the best results reported on this dataset.
منابع مشابه
Distributional semantics beyond words: Supervised learning of analogy and paraphrase
There have been several efforts to extend distributional semantics beyond individual words, to measure the similarity of word pairs, phrases, and sentences (briefly, tuples; ordered sets of words, contiguous or noncontiguous). One way to extend beyond words is to compare two tuples using a function that combines pairwise similarities between the component words in the tuples. A strength of this...
متن کاملA Supervised Classification Approach for Measuring Relational Similarity between Word Pairs
Measuring the relational similarity between word pairs is important in numerous natural language processing tasks such as solving word analogy questions, classifying nounmodifier relations and disambiguating word senses. We propose a supervised classification method to measure the similarity between semantic relations that exist between words in two word pairs. First, each pair of words is repr...
متن کاملThe Effect of Semantic and Relational Similarity on the N400 Event-Related Potential in Verbal Analogical Reasoning
Previous neuroimaging studies (e.g., Green et al., 2010; Kmiecik & Morrison, 2013) suggest the neurocognitive processes responsible for verbal analogical reasoning vary with the semantic distance between source and target. In order to further investigate how semantic and relational similarity interacts during reasoning, we presented the A-, B-, C-, and D-terms of verbal analogies sequentially w...
متن کاملSimilarity Reasoning over Semantic Context–graphs
Similarity is a central cognitive mechanism for humans which enables a broad range of perceptual and abstraction processes, including recognizing and categorizing objects, drawing parallelism, and predicting outcomes. It has been studied computationally through models designed to replicate human judgment. The work presented in this dissertation leverages general purpose semantic networks to der...
متن کاملTowards a Unified Framework for Transfer Learning: Exploiting Correlations and Symmetries
Recent work has shown that neuralembedded word representations capture many relational similarities, which can be recovered by means of vector arithmetic in the embedded space. We show that Mikolov et al.’s method of first adding and subtracting word vectors, and then searching for a word similar to the result, is equivalent to searching for a word that maximizes a linear combination of three p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Manage.
دوره 49 شماره
صفحات -
تاریخ انتشار 2013